DELKIN DEVICES

Utility + SATA III mSATA Solid State Drive Engineering Specification

Document Number: 401-0577-00

Revision: A

Product Overview

- Capacity
 - 128GB up to 1TB
- SATA Interface
 - SATA Revision 3.1
 - SATA Gen3 /Gen 2/Gen 1 interface
- Flash Interface
 - Flash type: 3D TLC
- Performance
 - Read: up to 550 MB/s
 - Write: up to 510 MB/s
- Power Consumption^{Note1}
 - Active mode: < 1,750mW</p>
 - Idle mode: < 210mW

- MTBF
 - More than 2,500,000 hours
- Features
 - Advanced Wear Leveling
 - Bad Block Management
 - TRIM
 - SMART
 - Over-Provisioning
- Low Power Management
 - DEVSLP Mode (Optional)
 - DIPM/HIPM Mode
- Temperature Range
 - Operation: -40°C ~ 85°C
 - Storage: -40°C ~ 85°C
- RoHS compliant

Notes:

1. Please see "4.2 Power Consumption" for details.

TABLE OF CONTENTS

1.	INTRODUCTION	5
	1.1. General Description	5
	1.2. Product Block Diagram	5
	1.3. Flash Management	5
	1.3.1. Error Correction Code (ECC)	5
	1.3.2. Wear Leveling	5
	1.3.3. Bad Block Management	6
	1.3.4. TRIM	6
	1.3.5. SMART	6
	1.3.6. Over-Provisioning	6
	1.3.7. Thermal Throttling	7
	1.4. Low Power Management	7
	1.4.1. DEVSLP Mode (Optional)	7
	1.4.2. DIPM/HIPM Mode	7
	1.5. Advanced Device Security Features	7
	1.5.1. Secure Erase	7
	1.5.2. Write Protect	7
	1.6. SSD Lifetime Management	8
	1.6.1. Terabytes Written (TBW)	8
	1.7. An Adaptive Approach to Performance Tuning	8
	1.7.1. Throughput	8
	1.7.2. Predict & Fetch	8
2.	PRODUCT SPECIFICATIONS	9
3.	ENVIRONMENTAL SPECIFICATIONS	11
	3.1. Environmental Conditions	11
	3.1.1. Temperature and Humidity	11
	3.1.2. Shock & Vibration	11
	3.1.3. Electrostatic Discharge (ESD)	11
	3.1.4. EMI Compliance	11
	3.2. MTBF	11
	3.3. Certification & Compliance	11
4.	ELECTRICAL SPECIFICATIONS	12
	4.1. Supply Voltage	12
	4.2. Power Consumption	12

5.	INTERFACE	13
	5.1. Pin Assignment and Descriptions	13
6.	SUPPORTED COMMANDS	15
	6.1. ATA Command List	15
	6.2. Identify Device Data	17
7.	PHYSICAL DIMENSIONS	21
	LIST OF FIGURES	
	Figure 1-2 mSATA SSD Product Block Diagram	5
	LIST OF TABLES	
	Table 4-1 Supply Voltage	12
	Table 4-2 Power Consumption	12
	Table 5-1 Pin Assignment and Description for mSATA	13
	Table 6-1 ATA Command List	15
	Table 6-2 List of Device Identification	17
	Table 6-3 List of Device Identification for Each CapacityErro defined.	r! Bookmark not

1. INTRODUCTION

1.1. General Description

Delkin's Utility+ mSATA Solid State Drive (SSD) delivers all the advantages of flash disk technology with Serial ATA I/II/III interface and is fully compliant with the JEDEC MO-300B form factor standard. The mSATA draws significantly lower power compared to traditional hard drives. The drive is available in capacities from 128GB to 1TB and can reach speeds up to 550MB/s read as well as 510MB/s write (measured by CrystalDiskMark v5.0).

1.2. Product Block Diagram

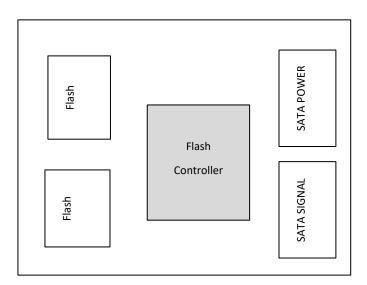


Figure 1-1 Top Side mSATA SSD Product Block Diagram

1.3. Flash Management

1.3.1. Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Delkin's Utility+ mSATA SSD applies the LDPC (Low Density Parity Check) algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2. Wear Leveling

NAND flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some areas are updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling is applied to extend the

lifespan of NAND flash by evenly distributing write and erase cycles across the media.

Delkin utilizes advanced Wear Leveling algorithms, which can efficiently distribute flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND flash is greatly improved.

1.3.3. Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during usage of the flash are named "Later Bad Blocks". Delkin implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves data reliability.

1.3.4. TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform an erase action, which prevents unused data from occupying blocks.

1.3.5. SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

1.3.6. Over-Provisioning

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible or usable by users. With Over Provisioning, the performance and IOPS (Input/Output Operations per Second) are improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.3.7. Thermal Throttling

The purpose of thermal throttling is to prevent any components in the SSD from over-heating during read and write operations. Firmware will apply different levels of throttling to achieve the purpose of protection efficiently and proactively via SMART reading.

1.4. Low Power Management

1.4.1. DEVSLP Mode (Optional)

With the increasing need of aggressive power/battery life, SATA interfaces include a new feature, Device Sleep (DEVSLP) mode, which helps further reduce the power consumption of the device. DEVSLP enables the device to completely power down the device PHY and other sub-systems, making the device reach a new level of lower power operation. The DEVSLP does not specify the exact power level a device can achieve in the DEVSLP mode, but the power usage can be dropped down to 5mW or less.

1.4.2. DIPM/HIPM Mode

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. In Partial mode, the device must resume full operation within 10 microseconds, whereas in Slumber mode, the device has 10 milliseconds to become fully operational. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

1.5. Advanced Device Security Features

1.5.1. Secure Erase

Secure Erase is a standard ATA command and will write "0xFF" to all cells, to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will erase its storage blocks and return to its factory default settings.

1.5.2. Write Protect

When a SSD contains too many bad blocks and data is continuously written in, then the SSD may no longer be usable. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

1.6. SSD Lifetime Management

1.6.1. Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

TBW = [(NAND Endurance) x (SSD Capacity) x (WLE)] / WAF

NAND Endurance: NAND endurance refers to the P/E (Program/Erase) cycle of a NAND flash.

SSD Capacity: The SSD capacity is the specific capacity in total of a SSD.

<u>WLE</u>: Wear Leveling Efficiency (WLE) represents the ratio of the average amount of erases on all the blocks to the erases on any block at maximum.

<u>WAF</u>: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller needs to write and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency of data written to flash memory.

1.7. An Adaptive Approach to Performance Tuning

1.7.1. Throughput

Based on the available space of the disk, Delkin SSD controller will regulate the read/write speed and manage the throughput performance. When significant free space remains, the firmware will continuously perform read/write activity. At this stage, there is still no need to implement garbage collection to allocate and release memory, which will accelerate read/write processing to improve the performance. However, when free space is used up, the controller will slow down the read/write processing, and implement garbage collection to release memory blocks. Hence, read/write performance will become slower.

1.7.2. Predict & Fetch

Normally, when the host tries to read data from the SSD, the SSD will only perform one read action after receiving one command. However, Delkin's controller applies *Predict & Fetch* to improve the read speed. When the host issues sequential read commands to the SSD, the SSD will automatically expect that the following will also be read commands. Thus, before receiving the next command, flash has already prepared the data. Accordingly, this accelerates the data processing time, and the host does not need to wait as long to receive data.

2. PRODUCT SPECIFICATIONS

Capacity

■ From 128GB up to 1TB

Electrical/Physical Interface

- SATA Interface
 - Compliant with SATA Revision 3.1
 - ♦ Compatible with SATA Gen3/ Gen2/ Gen1 interface
 - ◆ AC coupling for transmitter and receiver
 - ♦ Self-calibrated and embedded termination resistor at transmitter
 - Supports power management
 - ♦ Supports expanded register for SATA protocol 48 bit addressing mode

ECC Scheme

• LDPC (Low Density Parity Check) ECC algorithm.

Operation Voltage Supply

♦ 3.3V ± 5%

• Supports SMART and TRIM commands

Performance and Power Consumption

	Perforr	mance	Power Consumption			
Capacity	CrystalDiskMark		Read	Write	IDLE	
	Read (MB/s)	Write (MB/s)	(mW)	(mW)	(mW)	
128GB	550	450	1150	1250	210	
256GB	550	485	1150	1350	210	
512GB	550	500	1250	1600	210	
1TB	550	510	1350	1750	210	

NOTE:

- 1. The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by CyrstalDiskMark.
- 3. Power Consumption may differ according to flash configuration, SDR configuration, or platform.
- 4. Measurement environment: Room temperature: 20~25°C, humidity: 40~60%RH.
- 5. The performance was measured using CrystalDiskMark v5.0x64 with SATA 6Gbps host.
- 6. Performance may differ according to flash configuration, SDR configuration, and platform.
- 7. The table above is for reference only. The criteria for MP (mass production) and for accepting goods shall be discussed based on different flash configuration

• Endurance - TBW (Terabytes Written)

Capacity	твw
128GB	65
256GB	220
512GB	540
1TB	1200

NOTES:

- 1. The test followed JEDEC 219A client endurance workload.
- 2. TBW may differ according to flash configuration, platform and data written.
- 3. The endurance of SSD could be estimated based on user behavior, NAND endurance cycles, and write amplification factor. It is not guaranteed by flash vendor.

Part Numbers

3D TLC mSATA (-40 to 85°C Operating Temperature)

Capacity	Part Number
128GB	ME1HFTTM5-3N000-2
256GB	ME2HFTUM5-3N000-2
512GB	ME5HFTVM5-3N000-2
1TB	ME1TFTVM5-3N000-2

3. ENVIRONMENTAL SPECIFICATIONS

3.1. Environmental Conditions

3.1.1. Temperature and Humidity

• Temperature:

♦ Storage: -40°C to 85°C

◆ Operational: -40°C to 85°C

Humidity:

◆ RH 90% under 55°C (operational)

3.1.2. Shock & Vibration

Shock Specification

◆ 1500G, G0-p/0.5ms duration

Vibration Specification

◆ 20Hz ~ 80Hz/1.52mm displacement, 80Hz~2000Hz / 20Gp-p

3.1.3. Electrostatic Discharge (ESD)

+/- 4KV contact

3.1.4. EMI Compliance

• FCC: ANSI C63.4

• CE: EN 55032, CISPR32

BSMI : CNS 13438

• VCCI : VCCI-CISPR32

3.2. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device. The predicted result of Delkin's mSATA SSD is more than 2,500,000 hours.

3.3. Certification & Compliance

RoHS

4. ELECTRICAL SPECIFICATIONS

4.1. Supply Voltage

Table 4-1 Supply Voltage

Parameter	Rating
Operating Voltage	3.3V, +/- 5% (3.14 - 3.46V)
Rise Time (Max./Min.)	100ms / 0.1ms
Fall Time (Max./Min.)	5s / 10ms
Min. Off Time	1s

4.2. Power Consumption

Table 4-2 Power Consumption

				•	
Capacity	Read	Write	Partial	Slumber	ldle
128GB	1,150	1,250	65	25	210
256GB	1,150	1,350	65	25	210
512GB	1,250	1,600	65	27	210
1TB	1,350	1,750	65	27	210

Unit: mW

NOTES:

- 1. 1The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by CyrstalDiskMark.
- 3. Power Consumption may differ according to flash configuration, SDR configuration, or platform.
- 4. Measurement environment: Room temperature: 20~25°C, humidity: 40~60%RH...

5. INTERFACE

5.1. Pin Assignment and Descriptions

Table 5-1 Pin Assignment and Description for mSATA

Pin Number	mSATA Pin	Description		
1	NC	No Connect		
2 +3.3V		3.3V Source		
3	NC	No Connect		
4	DGND	Digital GND		
5	NC	No Connect		
6	NC	No Connect		
7	NC	No Connect		
8	NC	No Connect		
9	DGND	Digital GND		
10	NC	No Connect		
11	NC	No Connect		
12	NC	No Connect		
13	NC	No Connect		
14	NC	No Connect		
15	DGND	Digital GND		
16	NC	No Connect		
17	NC	No Connect		
18	DGND	Digital GND		
19	NC	No Connect		
20	NC	No Connect		
21	SATA GND	SATA Ground Return Pin		
22	NC	No Connect		
23	TXP (out)	Host Receiver Differential Signal Pair		
24	+3.3V	3.3V Source		
25	TXN (out)	Host Receiver Differential Signal Pair		
26	SATA GND	SATA Ground Return Pin		
27	SATA GND	SATA Ground Return Pin		
28	NC	No Connect		
29	SATA GND	SATA Ground Return Pin		
30	NC	No Connect		
31	RXN (in)	Host Transmitter Differential Signal Pair		
32	NC	No Connect		
33	RXP (in)	Host Transmitter Differential Signal Pair		

34	DGND	Digital GND
35	SATA GND	SATA Ground Return Pin
36	NC	No Connect
37	SATA GND	SATA Ground Return Pin
38	NC	No Connect
39	+3.3V	3.3V Source
40	DGND	Digital GND
41	+3.3V	3.3V Source
42	NC	No Connect
43	NC	No Connect
44	DEVSLP	Enter/Exit DevSleep
45	NC	Reserved Pin
46	NC	No Connect
47	NC	Reserved Pin
48	NC	No Connect
49	DAS	Device Activity Signal
50	DGND	Digital GND
51	GND	Default Connect to GND
52	+3.3V	3.3V Source

6. SUPPORTED COMMANDS

6.1. ATA Command List

Table 6-1 ATA Command List

Op Code	Description	Op Code		le	Description		
00h	NOP	E1h			Idle Immediate		
06h	Data Set Management	E2h			Standby		
10h-1Fh	Recalibrate		E3h		Idle		
20h	Read Sectors		E4h		Read Buffer		
21h	Read Sectors without Retry		E5h		Check Power Mode		
24h	Read Sectors EXT		E6h		Sleep		
25h	Read DMA EXT		E7h		Flush Cache		
27h	Read Native Max Address EXT		E8h		Write Buffer		
29h	Read Multiple EXT		E9h		READ BUFFER DMA		
2Fh	Read Log EXT		EAh		Flush Cache EXT		
30h	Write Sectors		EBh		Write Buffer DMA		
31h	Write Sectors without Retry		ECh		Identify Device		
34h	Write Sectors EXT		EFh		Set Features		
35h	Write DMA EXT		90h		Execute Device Diagnostic		
37h	Set Native Max Address EXT		91h		Initialize Device Parameters		
39h	Write Multiple EXT		92h		Download Microcode		
3Dh	Write DMA FUA EXT		93h		Download Microcode DMA		
3Fh	Write Long EXT		B0h		SMART		
40h	Read Verify Sectors	EFh	EFh 02h		Enable volatile write cache		
41h	Read Verify Sectors without Retry	EFh 03h		3h	Set transfer mode		
42h	Read Verify Sectors EXT	EFh 05h		5h	Enable the APM feature set		
47h	Read Log DMA EXT	EFh	10)h	Enable use of SATA features et		
57h	Write Log DMA EXT	EFh	10h	02h	Enable DMA Setup FIS Auto-		
					Activate optimization		
60h	Read FPDMA Queued	EFh	10h	03h	Enable Device-initiated interface		
0011			1011	0311	power state (DIPM) transitions		
641			401	0.61	Enable Software Settings		
61h	Write FPDMA Queued	EFh	10h	06h	Preservation (SSP)		
70h-76h	Seek	EFh	10h	07h	Enable Device Automatic Partial to		
7011-7011	Seek	LIII	1011	0711	Slumber transitions		
79h-7Fh	Seek	EFh	10h	09h	Enable Device Sleep		
C9h	Read DMA without Retry			5h	Disable read look-ahead		
CAh	Write DMA	EFh 66h		5h	Disable reverting to power-on defaults		
CBh	Write DMA without Retry	EFh 82h		2h	Disable volatile write cache		
CEh	Write Multiple FUA EXT	EFh	1	5h	Disable the APM feature set		

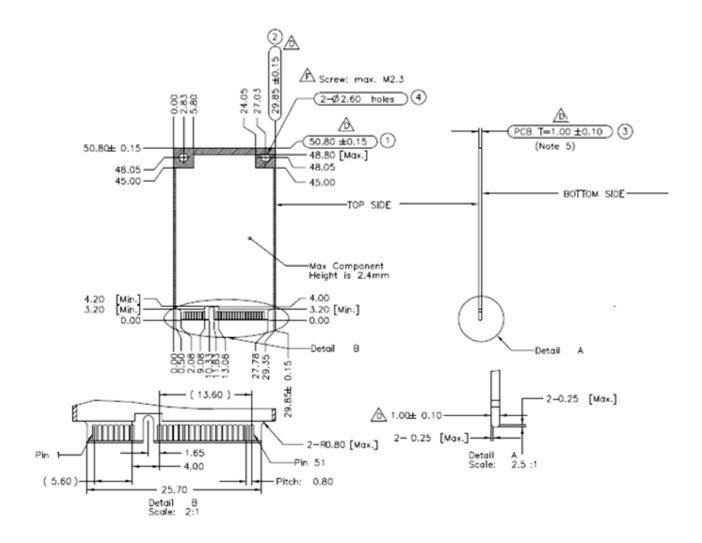
Op Code		le	Description	0	Op Code		Description		
E0h			Standby Immediate	EFh	h 90h		Disable use of SATA feature set		
	C4h		C4h		Dood Multiple	FFL	006	026	Disable DMA Setup FIS Auto-
			Read Multiple	EFh	90n	02h	Activate optimization		
	CEL		M/sita Multipla	ГГЬ	OOL	03h	Disable Device-initiated interface		
	C5h		Write Multiple	EFh	9011	USII	power state (DIPM) transitions		
	C6h		Sat Multiple Made	EFh	OOh	06h	Disable Software Settings		
	COII		Set Multiple Mode	EFII	3011	0011	Preservation (SSP)		
	C8h		Read DMA	EFh	anh	07h	Disable Device Automatic Partial to		
	COIT		Nead DIVIA	LIII	3011	0711	Slumber transitions		
B0h	D(Oh	SMART READ DATA	EFh	90h	09h	Disable Device Sleep		
B0h	D2h	00h	SMART READ ATTRIBUTE	EFh	90h	02h	Disable DMA Setup FIS Auto-		
DOIT	DZII	0011	THRESHOLDS		5011	0211	Activate optimization		
B0h	D2h	F1h	SMART ENABLE ATTRIBUTE	EFh	90h	03h	Disable Device-initiated interface		
DOIT	DZII	1 111	AUTOSAVE		3011	0311	power state (DIPM) transitions		
B0h	ח	4h	SMART EXECUTE OFF-LINE	EFh	90h	06h	Disable Software Settings		
DOIT	J-	T11	IMMEDIATE		5011	0011	Preservation (SSP)		
B0h	D5h		n SMART READ LOG	EFh	90h	07h	Disable Device Automatic Partial to		
DOIT					3011	0711	Slumber transitions		
B0h	B0h D6h		SMART WRITE LOG	EFh	1	I	Disable Device Sleep		
B0h	D	3h	SMART ENABLE OPERATIONS	EFh	AAh		Enable read look-ahead		
B0h	D9h		D9h SMART DISABLE OPERATIONS	EFh	C	Ch	Enable reverting to power-on		
							defaults		
B0h	D/	٩h	SMART RETURN STATUS		F1h		Security Set Password		
B1h	C)h	DEVICE CONFIGURATION		F2h		Security Unlock		
			RESTORE				,		
B1h	C	2h	DEVICE CONFIGURATION		F3h		Security Erase Prepare		
			IDENTIFY				, ,		
B1h	C:	3h	DEVICE CONFIGURATION SET		F4h		Security Erase Unit		
B1h	C4	1h	DEVICE CONFIGURATION		F5h		Security Freeze Lock		
			IDENTIFY DMA						
B1h	C5h		DEVICE CONFIGURATION SET		F6h		Security Disable Password		
501 011			DMA				·		
F9h		lh	SET MAX SET PASSWORD		F8h		Read Native Max Address		
F9h		2h	SET MAXLOCK		F9h		Set Max Address		
F9h		3h	SET MAX UNLOCK						
F9h	04	1h	SET MAX FREEZE LOCIK						

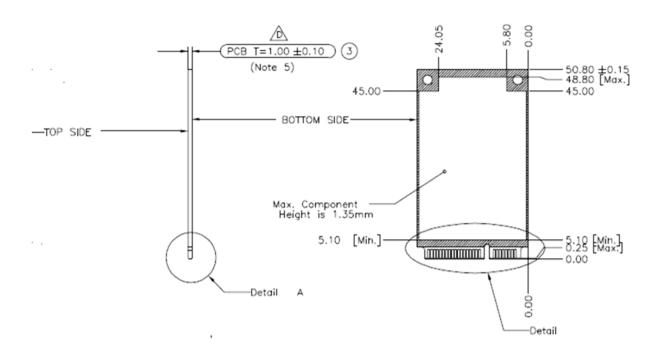
6.2. Identify Device Data

The following table details the sector data returned by the IDENTIFY DEVICE command.

Table 6-2 List of Device Identification

Word	F: Fixed V: Variable X: Retired / Obsolete / Reserved	Default Value	Description
0	F	0040h	General configuration bit-significant information
1	Х	*1	Obsolete
2	F	C837h	Specific configuration
3	X	*2	Obsolete
4-5	Х	0000h	Retired
6	Х	*3	Obsolete
7-8	X	0000h	Reserved for assignment by the Compact Flash Association
9	Х	0000h	Retired
10-19	V	Varies	Serial number (ATA string)
20-21	X	0000h	Retired
22	X	*4	Obsolete
23-26	V	Varies	Firmware revision (ATA string)
27-46	V	Varies	Model number (ATA string)
47	Х	*5	Obsolete
48	F	4000h	Trusted Computing feature set options
49	F	2F00h	Capabilities
50	F	4000h	Capabilities
51-52	Х	*6	Obsolete
53	F	0007h	Word 88 and 70:64 are valid
54-58	Х	*7	Obsolete
59	F	DD10h	Number of sectors transferred per interrupt on MULTIPLE commands
60-61	V	Varies	Maximum number of sector (28bit LBA mode)
62	Х	*8	Obsolete
63	F	0407h	Multiword DMA modes supported/selected
64	F	0003h	PIO mode 3 and mode 4 supported
65	F	0078h	Minimum Multiword DMA transfer cycle time per word
66	F	0078h	Manufacturer's recommended Multiword DMA transfer cycle time
67	F	0078h	Minimum PIO transfer cycle time without flow control


68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control
69	F	9F00h	Additional Supported (support download
			microcode DMA)
70	Х	0000h	Reserved
71-74	Х	0000h	Reserved for the IDENTIFY PACKET DEVICE
			command
75	F	001Fh	Queue depth
76	F	C50Eh	Serial SATA capabilities
77	F	0006h	Serial ATA Additional Capabilities
78	F	004Ch	Serial ATA features supported
79	F	0040h	Serial ATA features enabled
80	F	0FF8h	Major Version Number
81	F	0000h	Minor Version Number
82	F	746Bh	Commands and feature sets supported
83	F	7D09h	Commands and feature sets supported
84	F	4163h	Commands and feature sets supported
85	F	7469h	Commands and feature sets supported or enabled
86	F	BC01h	Commands and feature sets supported or enabled
87	F	4163h	Commands and feature sets supported or enabled
88	F	007Fh	Ultra DMA Modes
89	F	000Ah	Time required for Security Erase Unit command
90	F	001Eh	Time required for Security Erase Unit command
91	F	0000h	Current APM level value
92	F	FFFEh	Master Password Identifier
93	F	0000h	Hardware reset result. For SATA devices, word 93
			shall be set to the value 0000h.
94	Х	*9	Obsolete
95	F	0000h	Stream Minimum Request Size
96	F	0000h	Streaming Transfer Time – DMA
97	F	0000h	Streaming Access Latency – DMA and PIO
98-99	F	0000h	Streaming Performance Granularity
100-	V	Varies	Number of User Addressable Logical Sectors
103			
104	F	0000h	Streaming Transfer Time – PIO
105	F	0004h	Maximum number of 512-byte blocks per DATA
			SET MANAGEMENT command


106	F	4000h	Physical sector size/Logical sector size
107	F	0000h	Inter-seek delay for ISO-7779 acoustic testing
108-	V	Varies	World Wide Name
111	·	7555	
112-	X	0000h	Reserved
	*	UUUUN	Reserved
115			
116	X	*10	Obsolete
117-	F	0000h	Logical sector size
118			
119	F	4018h	Commands and feature sets supported
120	F	4018h	Commands and feature sets supported or enabled
121-126	X	0000h	Reserved for expanded supported and enabled
•	,		settings
127	Х	*11	Obsolete
128	F	0021h	Security status
129-159	V	Varies	Vendor specific
160-167	Х	0000h	Reserved for CFA
168	V	Varies	Device Nominal Form Factor
169	F	0001h	DATA SET MANAGEMENT command support
170-173	F	0000h	Additional Product Identifier
174-175	Х	0000h	Reserved
176-205	F	0000h	Current media serial number
206	F	0000h	SCT Command Transport
207-208	Χ	0000h	Reserved
209	F	4000h	Alignment of logical sectors within a physical
			sector
210-211	F	0000h	Write-Read-Verify Sector Mode 3 Count
			(not support)
212-213	F	0000h	Write-Read-Verify Sector Mode 2 Count
			(not support)
214-216	Х	*12	Obsolete
217	F	0001h	Nominal media rotation rate
218	Χ	0000h	Reserved
219	Х	*13	Obsolete
220	V	0000h	Write-Read-Verify feature set current mode
221	X	0000h	Reserved
222	F	107Fh	Transport major version number
223	F	0000h	Transport minor version number
224-229	Χ	0000h	Reserved
230-233	F	0000h	Extend number of user addressable sectors
234	F	0001h	Minimum number of 512-byte data blocks per
			Download Microcode operation

235	F	FFFEh	Minimum number of 512-byte data blocks per
			Download Microcode operation
236-254	X	0000h	Reserved
255	F	Varies	Integrity word (Checksum and Signature)
			Bit[15:8] Checksum

7. PHYSICAL DIMENSIONS

Dimension: 50.8mm (L) x 29.85mm (W) x 4.00mm (H)

Notes:

- 1. = Max Component Height is
- 2. = No Component
- 3. Signal Vias / Signal Copper/Print
- 4. General Tolerance: ±0.1mm
- 5. Card Thickness applies accross tab and includes plating and/or metalization
- ♠6. Check Point: ① ~ ④
- ♠7. Screw Max. Size M2.3

WARNING: This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm. For more information go to www.p65warnings.ca.gov.