Delkin Blog

SLC NAND – Built for Industrial Applications

 

Industrial applications require non-volatile storage devices that are extremely reliable, robust and have an extended life cycle. Delkin SLC NAND Industrial storage devices meet these rigorous requirements by utilizing SLC (Single Level Cell) flash memory, the ultimate in NAND technology. SLC flash memory is ideal for industrial applications needing high endurance, ruggedness in harsh environmental conditions and long life cycles.

The flash memory mainstream markets, such as enterprise applications, are driven by maximum capacity and performance along with lowest possible cost per gigabyte.  These drivers have forced flash memory manufacturers to compromise reliability and robustness, by increasing densities through die shrinks for 2D NAND and now increased layer counts for 3D NAND – while sacrificing endurance.  In order to keep up with the insatiable demand for storage in these markets, the technology is forced to transition to a new generation approximately every 12 – 18 months.  This is acceptable for commercial products because of the capacity and cost benefits of each new release, but for industrial users, an 18-month life cycle adds to the total cost of ownership due to the expense of requalification.  It is not uncommon for an industrial qualification to take up to a year, due to the extensive testing and characterization required, with some applications also mandating third-party certification or approval.  For this reason, SLC is often a better fit, where the life cycle is typically a minimum of five years and often much longer.

Industrial solutions are also built with MLC (Multi-Level Cell) or industrial 3D flash memory, and can deliver some of the attributes required by industrial applications, such as an extended temperature range (-40°C to +85°C).  However, it is important to note the key differences between an MLC or 3D industrial storage product and a true industrial device built with SLC NAND.  The most significant difference is in the endurance of the NAND – represented by the number of times a cell can be reliably programmed and erased.  SLC flash memory devices are rated for 50,000 to 100,000 Program / Erase (P/E) cycles, whereas MLC and Industrial 3D devices are typically rated for 3,000 P/E cycles.  The higher endurance makes SLC more reliable for applications that are write intensive and demand storage devices to operate without issues.  The difference in endurance is due to the method used to program and erase a cell, and the resulting amount of stress placed on the cell with each subsequent cycle.  SLC induces less stress on the cell because it only has two states (Figure 1), compared to MLC which has four states (Figure 2).  Each state requires electrons to be forced in or out of the floating gate, where the stress is more prominent.  With increased program/erase cycles, the tunnel oxide layer (Figure 3) that isolates the floating gate deteriorates, until such time that it can no longer provide the insulation needed to prevent electron leakage and data loss.

In addition to the much higher endurance, all Delkin SLC flash memory storage devices are rated to operate at extreme temperatures, -40°C to 85°C, and have an even wider storage temperature range.  The extended thermal rating allows the SLC to be deployed in applications with harsh environmental conditions, in contrast to most commercial storage solutions which are only rated for 0 to 70°C.

 

When an industrial application demands the ultimate in reliability from its storage device, the ideal choice is an SLC-based solution.  Delkin Devices SLC storage products are proudly built in the USA with a controlled BOM, and have the endurance, ruggedness and long life cycle to ensure reliable operation and performance for years to come.

 

To learn more about Delkin’s complete line of SLC storage devices, contact us today.

 

ORDER DELKIN INDUSTRIAL FLASH STORAGE TODAY through our distribution partner Newark.

For Europe Contact Our Partner Farnell

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Customer Success Story: Maximizing Speed and Performance with a Locked BOM

  For industrial customers, the prospect of frequently recertifying components like embedded memory is simply...

Understanding the Architecture of an SLC USB Flash Drive

  Flash drives are one of the most recognizable, widely used forms of memory. One...

FAQs About the Industrial CFast Card

  Industrial CFast cards offer high-capacity storage solutions for applications that are migrating to a...

Industrial SATA for Controls/Automation

  In recent years, an increased use of controls/automation has revolutionized efficiency in factory settings....

Customer Success Story: Application Lifecycle Challenges

  In 2009, mSATA was introduced to the market to address the demand for consumer...

Answering Common Questions About M.2

  Flash memory form factors that are widely compatible and appropriate for a variety of...

Temperature and SLC NAND Flash Memory: What You Need to Know

  NAND flash memory is the preferred form of storage for everything from consumer smartphones...

Concept of Communication Network Applications in City
Industrial CF Cards for the Communications/Networking Industry

  Which kind of embedded storage is best for industrial applications?  It is an understandable...

Delkin PRD SD MICROSD
The ABC’s of microSD and SD Cards

  It used to be so simple.  Just select a Class 10 card and you...

Delkin Devices M.2 2280, PCIe, 128 GB SSD featured for the new UltraZed-EV

Delkin Devices SSD, Internal, M.2 2280 is featured for NVMe SSD capability to the...