Delkin Blog

Taking a Closer Look at the M.2 SATA Connector

Industrial M.2 SSD

 

As solid state drives, or SSDs, replaced hard disk drives (HDDs) as the most popular form of embedded storage, there was an ongoing concern about the limitations of the interfaces to which the SSDs were attached. Many interfaces, such as the SATA third-generation interfaces, were specifically designed to work with HDDs and could only run with a maximum transfer speed of 6 Gb/s. The mini version of the SATA interface, mSATA, is limited to the 6 Gb/s transfer speeds, even though it is designed to work in small devices with high-speed SSDs. The M.2 SATA connector is the solution to these speed concerns. Here is what you need to know.

 

From NGFF to M.2

M.2 is a specification that refers to add-in cards that are mounted internally. When it was introduced to the market as a way to deal with the speed limitations of mSATA, it was called Next Generation Form Factor, or NGFF. However, it was renamed M.2 in 2013. M.2 supports SATA and PCIe interfaces, but it can only be used in one or the other. For this reason, if you are considering an M.2 SSD module for your application, it is necessary to first check your motherboard design to see if the option you are considering will be compatible.

 

M.2 vs. mSATA SSDs

Both mSATA and M.2 are powerful SSDs that come in small packages, making them ideal for use in laptops, tablets, and other small devices. Originally, mSATA was used exclusively in these devices that had the need for a small form factor, but the speed limitations were problematic. For this reason, M.2 was created. Now, there are multiple options for small form factors that still offer high performance. M.2 generally offers higher speeds than mSATA with a smaller footprint, and it features longer modules and double-sided component population. This means that it can provide a greater amount of storage without taking up extra space. M.2 SSDs are available in three dimensions. When selecting a size, it’s important to consider thermal management. If heat dissipation is not sufficient, then there could be performance issues in the future.

 

If you’re considering an M.2 SATA connector, let Delkin help you weigh your options and choose the right connector for your needs. Contact our product team to discuss your design, and we will help you find the right fit for your device.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Industrial Flash Storage in Flight Data Recorders

Flight data recorders are a key component of aviation safety. Information gleaned from flight...

Technical Success Story: Locked BOM Maximizes Performance and Speed

  A locked BOM, or bill of materials, is one of the key advantages to...

Understanding the Price of Data Failure

  Data security is a significant concern for anyone who uses anything from a smartphone...

Addressing Power Fail Concerns for Industrial Applications

  For industrial developers, power failures are one of the biggest challenges. A power fail...

Industrial SATA - Delkin Devices
A Look at Different Types of Form Factors

  In computing, “form factor” is a catch-all term that can have a few different...

Delkin Devices Technical Success Stories- Female Engineer- Businesswoman
NAND Flash Memory Suppliers

  For industrial device engineers and users, NAND flash memory has trounced hard disk drive,...

Avnet & Delkin Devices

   Avnet is a leading provider of parts for the world of technology. Companies of...

BE64MGMZZ-XN000-D - SATA - CFast - 64GB - SLC
CFast SATA Cards

CFast memory cards offer high-speed data transfer solutions and large capacities. This makes them...

Power Fail
Intelligent Power Consumption

  The power consumption of embedded storage devices is one of the leading factors that...

What Is NAND Flash Storage?

If you’ve been searching for industrial grade memory, then you have likely encountered the...