Delkin Blog

SLC vs. MLC Life Span: What You Need to Know

 

One of the key issues developers and OEMs have to consider when they are choosing SSDs and embedded storage for their applications is life span, and one of the key factors that influences life span is whether the SSD has single-level cell (SLC) or multi-level cell (MLC) storage. Considering the expected life span of an SSD will help developers and OEMs make a selection that fits the demands of their application appropriately, while balancing all other concerns. How does the question of SLC vs. MLC life span shake out? Here is what you need to know.

 

A Primer on SLC vs. MLC

With SLC SSDs, one bit of data is stored per cell. To store that data, only two threshold voltages are required in the application. This allows operations to occur quickly and also mitigates the risk of data loss, since there is less time for a power failure or other issue to cause loss or corruption.

 

In an MLC SSD, two bits of data are stored per cell. In order to store these two bits of data, four different threshold voltages are required. This creates a slightly slower process when applications are being read and written, which in turn creates a slightly higher risk of an error happening during the process. However, MLC SSDs are still considered to be highly reliable and are widely used in a huge array of devices.

 

SLC vs. MLC Life Span Considerations

SLC and MLC SSD life spans differ based on several different factors. Because SSDs do not wear out during read applications like HDDs do, only write operations need to be considered when evaluating SSD life spans. Generally, the more data that are stored per cell, the faster the SSD will wear out. According to that rule, MLC SSDs generally have a shorter life span than SLC SSDs, and the difference can be significant. For example, an MLC SSD may last for about 3,000 cycles, while an SLC SSD in the same application may last for 60,000.

 

Most SSDs have an internal wear-leveling algorithm which ensures data are being stored in the most efficient way possible. Without this algorithm, data storage blocks could be used in a way in which available storage cells are wasted, thus shortening the storage device’s life span.

 

Let the product team at Delkin help you evaluate the likely life span of the SSD storage solution you’re considering for your industrial application. Contact our team today with your questions or to learn more information.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Customer Success Stories: Evaluating NAND Storage Options in Embedded Memory Cards

  For customers shopping for industrial embedded NAND storage solutions, comparing different SLC memory cards...

Answering Questions about Industrial Flash Storage for Military Applications

  The need for data security can hardly be higher than it is in military...

What You Need to Know about CF Industrial Memory

  CompactFlash, or CF, is one of the oldest and most recognizable forms of flash...

Answering Questions About 2.5 SSD, M.2, & mSATA Technology

  SATA SSDs are an enduringly popular legacy product for industrial users whose devices have...

Industrial Flash Storage for Government Applications

Rugged, industrial flash storage is the required standard for many government applications. There are...

Customer Success Story: Designing Applications Around Technological Advancements

  Engineers and designers behind technological industrial applications have a challenging balancing act. They need...

CFast SATA FAQs

  CompactFlash entered the storage market in 1995, and was long a familiar and reliable...

Automotive Grade SSD: Combining Reliability with Rugged Performance

  Gone are the days when cars were comprised solely of mechanical systems. Today, the...

Industrial Flash Storage for Agricultural Applications

  Technology has changed the way most industries operate, and the agricultural industry is no...

Industrial Flash Storage for Elevator Control Systems

  Modern elevator systems rely on automation for safe operation. Industrial flash storage for elevator...