Delkin Blog

SLC vs. MLC Life Span: What You Need to Know

 

One of the key issues developers and OEMs have to consider when they are choosing SSDs and embedded storage for their applications is life span, and one of the key factors that influences life span is whether the SSD has single-level cell (SLC) or multi-level cell (MLC) storage. Considering the expected life span of an SSD will help developers and OEMs make a selection that fits the demands of their application appropriately, while balancing all other concerns. How does the question of SLC vs. MLC life span shake out? Here is what you need to know.

 

A Primer on SLC vs. MLC

With SLC SSDs, one bit of data is stored per cell. To store that data, only two threshold voltages are required in the application. This allows operations to occur quickly and also mitigates the risk of data loss, since there is less time for a power failure or other issue to cause loss or corruption.

 

In an MLC SSD, two bits of data are stored per cell. In order to store these two bits of data, four different threshold voltages are required. This creates a slightly slower process when applications are being read and written, which in turn creates a slightly higher risk of an error happening during the process. However, MLC SSDs are still considered to be highly reliable and are widely used in a huge array of devices.

 

SLC vs. MLC Life Span Considerations

SLC and MLC SSD life spans differ based on several different factors. Because SSDs do not wear out during read applications like HDDs do, only write operations need to be considered when evaluating SSD life spans. Generally, the more data that are stored per cell, the faster the SSD will wear out. According to that rule, MLC SSDs generally have a shorter life span than SLC SSDs, and the difference can be significant. For example, an MLC SSD may last for about 3,000 cycles, while an SLC SSD in the same application may last for 60,000.

 

Most SSDs have an internal wear-leveling algorithm which ensures data are being stored in the most efficient way possible. Without this algorithm, data storage blocks could be used in a way in which available storage cells are wasted, thus shortening the storage device’s life span.

 

Let the product team at Delkin help you evaluate the likely life span of the SSD storage solution you’re considering for your industrial application. Contact our team today with your questions or to learn more information.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Temperature Considerations for SSD- Hot Climate
The Benefits of Industrial Temperature for Industrial Applications

  Flash storage solutions come in two categories—commercial and industrial. These two product grades are...

Digital Gaming Applications
Industrial CompactFlash (CF) Cards: The Perfect Fit for Gaming Applications

  Behind the bright lights and ringing sounds of casinos are the flash storage cards...

A Case Study in Application Design That Considers Technological Advancements

  When designing state-of-the-art technological applications, designers and engineers are faced with a major challenge—creating...

Healthcare Industrial Flash Storage
Modernize Your Healthcare Data Storage with Industrial Flash

  The healthcare community relies heavily on tech for daily functions, from reading test results...

Delkin Industrial Application Lifecycle Management
Product Life Cycle Management FAQs

  When it comes to flash storage, developing a world-class application isn’t enough. Life cycle...

Person on laptop evaluating SMART data
Customer Success Story: Enhance Embedded Memory with SMART Cards

Flash storage offers a modernized opportunity to store and access data at a high...

Ruggedized SSDs- Technology for Industrial Users: What You Need to Know

  SSDs are so ubiquitous today that you may be surprised to learn that they...

Delkin Devices Technical Support: We’re Here to Help

  Delkin Devices is a global industrial Flash memory and storage provider with the best...

Power Fail
Understanding Power Failures in Flash Storage

  The Cost of Power Failures  For industrial applications, the cost of power failures can be...

Ruggedized SSDs- Technology for Industrial Users: What You Need to Know

  SSDs are so ubiquitous today that you may be surprised to learn that they...