Delkin Blog

SATA vs. NVMe

UTILITY mSATA SSD

 

The ever-increasing use of data has resulted in an ever-increasing demand for faster data transfer rates. The speed of data transfer is largely controlled by the interface used by the drive. With more and more systems using SSDs—solid state drives—rather than HDDs, or hard disk drives, the data transfer rate of the interface is more important than ever. While HDDs seldom reach peak data transfer speed capacity, SSDs can, as long as the interface can support the speed that the drive is capable of handling. Two popular interfaces used with SSDs are SATA and NVMe. Although there are other interface options, most engineers and OEMs find themselves faced with a difficult choice of SATA vs. NVMe in their device designs. How do these interfaces compare? Here is what you need to know.

 

SATA

SATA is the most popular interface for SSDs today, perhaps in part because it is both the least expensive option and the best known. SATA is used in an enormous array of commercial and industrial products and has long offered users a reliable solution for SSD interface needs.

 

There are a few drawbacks to SATA, however. First, it is difficult to expand when using SATA, because hosts generally cannot have more than six SATA devices at any one time. The other major issue is the limit on transfer speeds. The newest version of SATA is more than a decade old, and it uses the legacy AHCI protocol. AHCI was designed for use with rotating HDDs, not SSDs, which is a further drawback on operation potential.

 

NVMe

NVMe is designed specifically for use with NAND flash, which is the storage format used in SSD devices. It uses PCIe to allow easy growth for host systems, without limits on the number of devices that can be used. It also provides a direct CPU connection for fast data transfer speeds, and frees up room in the storage device stack.

 

NVMe can deliver significantly higher data transfer rates than SATA systems. The drawback for many engineers is that NVMe interfaces are more expensive—and that so many devices already have SATA interfaces. However, as NAND flash becomes standard, it is possible that NVMe could replace SATA in terms of popularity.

 

Discuss your questions about SATA and NVMe interfaces and your embedded storage needs with Delkin. We’re ready provide the information you need to ensure your application can deliver optimum performance.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Industrial SLC microSD

  With the Industrial Internet of Things (IIoT), applications increased popularity for the industrial market,...

What is a Locked BOM? How Does It Work?

  What is a Locked BOM (Bill of Materials) Once an OEM has qualified a solution,...

Technical Success Stories: SLC SD Card Solution- Terabytes Written & Drive Writes

  “We were told that Terabytes Written (TBW) and Drive Writes Per Day (DWPD) are...

Delkin Devices is Built to Order in the USA

  When it comes to purchasing embedded storage devices, although there are a multitude of...

Temperature Considerations for SSD- Hot Climate
The Importance of SSD Industrial Temperature Considerations

  Industrial applications often face extreme temperature demands, and it’s important to note SSD industrial...

Delkin Devices Industrial USB Flash Drive
The Impressive Architecture of SLC USB Flash Drives

  Today’s SLC USB Flash drives are rugged, durable, and even customizable. Electrical engineers have...

Flash Endurance & SSD Wear Leveling Algorithms

  Although SLC NAND Flash memory provides a high level of performance, it still has...

Technical Success Story: Industrial and Commercial Flash Storage

  Commercial flash storage products are extremely common and widely available. For this reason, some...

Industrial Flash Storage Customization

  Flash memory cards are used in countless industrial, commercial, and consumer applications. There are...

SD, D300 Series, 16GB SLC Industrial
Technical Success Stories: SLC SD Card- Finding the Right Solution

  As flash technology evolves, it is becoming increasingly challenging to compare memory devices. At...