Delkin Blog

Answering Questions about Wear-Leveling Algorithms in SSD Controllers

Delkin Devices Non-volatile

 

Because NAND Flash blocks in SSDs have a limited number of erase cycles, it’s important for the longevity of the storage to maximize the use of these cycles. Wear-leveling algorithms do just that. With wear leveling, the endurance in NAND memory is increased to make SSDs as reliable as possible. How does it work? Here are the answers to questions engineers and other operators frequently have.

 

 

What exactly is wear leveling?

Within NAND storage, electrons can get trapped in the insulating oxide layer in the floating gate, and the oxide can break down because of hot carrier injections. These actions prevent NAND Flash from having an infinite number of program and erase cycles. Instead, most SLC NAND Flash storage devices work for 70,000 cycles. However, as the storage approaches this maximum usage, the cells become more unreliable. Wear leveling addresses this issue. Through wear-leveling algorithms, data from program and erase operations are evenly distributed on available blocks in the Flash drive. This activity happens automatically in the background, so that the host system is not affected.

 

How does it work?

Different SSD controller designers use different algorithms to achieve wear leveling, including both dynamic and static wear-leveling operations. In some cases, host data written for a Logical Block Address, or LBA, is physically stored where the lowest amount of endurance cycles are used. Because host data written to an LBA is not stored in the physical NAND location, in this scenario, a controller must track the translation.

 

Another approach involves static data that doesn’t move, such as applications data. This data can be moved by controllers to other NAND locations, opening up available storage space in NAND memory.

 

Are wear-leveling algorithms sufficient for improving NAND memory endurance?

Wear-leveling algorithms are essential for increasing endurance in SSDs, but it isn’t the only solution in use. There are multiple strategies working together to improve NAND stability in SSDs, including garbage collection algorithms and TRIM commands.

 

Delkin’s product team is available to answer questions about rugged storage solutions and device endurance for industrial applications. Explore our products’ technical specifications on our site, or contact us for additional information and samples.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

Utility
What Is e-MLC?

  Multi-level cell flash, or MLC, is a commercial grade of flash memory used in...

Concept of Communication Network Applications in City
Flash Storage Solutions in the IoT/IIoT

  Whether you notice it or not, the IoT, or Internet of Things, is changing...

Flash Memory Solutions for Factory Automation

  Modern factories no longer rely on an assembly line of workers to get jobs...

Identifying the Best SD Card for a Specific Application

  At Delkin Devices, one of the most frequent questions we face from customers is...

Industrial M.2 SSD
Understanding PCIe

  If you’re in the market for embedded storage, one term you may encounter frequently...

Transportation_Truck-Ship-Airplane
Transportation Applications Embedded Systems

  Embedded systems play a large role in transportation applications. They are used for a...

Memory Electronics

  Memory electronics—internal or external storage devices for computing systems that use electronics to record...

Wear Leveling Algorithm Data Concept for Solid State Drives (SSD)
Spotlight on 3D NAND Flash

  In the future, flash memory may be scaling vertically instead of horizontally. 3D NAND...

Energy Applications Embedded Systems

  Embedded systems are hardware and/or software systems inside of larger computing systems that perform...

eUSBDelkin Devices Embedded USB
FAQs about USB Embedded Systems

  When most people think of USBs, they think of the familiar external flash drives....