Delkin Blog

Answering Questions about Wear-Leveling Algorithms in SSD Controllers

Delkin Devices Non-volatile

 

Because NAND Flash blocks in SSDs have a limited number of erase cycles, it’s important for the longevity of the storage to maximize the use of these cycles. Wear-leveling algorithms do just that. With wear leveling, the endurance in NAND memory is increased to make SSDs as reliable as possible. How does it work? Here are the answers to questions engineers and other operators frequently have.

 

 

What exactly is wear leveling?

Within NAND storage, electrons can get trapped in the insulating oxide layer in the floating gate, and the oxide can break down because of hot carrier injections. These actions prevent NAND Flash from having an infinite number of program and erase cycles. Instead, most SLC NAND Flash storage devices work for 70,000 cycles. However, as the storage approaches this maximum usage, the cells become more unreliable. Wear leveling addresses this issue. Through wear-leveling algorithms, data from program and erase operations are evenly distributed on available blocks in the Flash drive. This activity happens automatically in the background, so that the host system is not affected.

 

How does it work?

Different SSD controller designers use different algorithms to achieve wear leveling, including both dynamic and static wear-leveling operations. In some cases, host data written for a Logical Block Address, or LBA, is physically stored where the lowest amount of endurance cycles are used. Because host data written to an LBA is not stored in the physical NAND location, in this scenario, a controller must track the translation.

 

Another approach involves static data that doesn’t move, such as applications data. This data can be moved by controllers to other NAND locations, opening up available storage space in NAND memory.

 

Are wear-leveling algorithms sufficient for improving NAND memory endurance?

Wear-leveling algorithms are essential for increasing endurance in SSDs, but it isn’t the only solution in use. There are multiple strategies working together to improve NAND stability in SSDs, including garbage collection algorithms and TRIM commands.

 

Delkin’s product team is available to answer questions about rugged storage solutions and device endurance for industrial applications. Explore our products’ technical specifications on our site, or contact us for additional information and samples.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

What Is NAND Flash Storage?

If you’ve been searching for industrial grade memory, then you have likely encountered the...

Delkin Utility Products
Commonly Asked Questions about Flash Storage Device Options

  Flash storage devices are enormously popular across consumer, commercial, and industrial markets. Chances are...

Get the Facts about mSATA 256GB

  Are you considering an mSATA SSD for your device? mSATA refers to mini-SATA, which...

Understanding the Price of Data Failure

  Data security is a significant concern for anyone who uses anything from a smartphone...

Industrial Flash Storage in Flight Data Recorders

Flight data recorders are a key component of aviation safety. Information gleaned from flight...

Technical Success Story: Locked BOM Maximizes Performance and Speed

  A locked BOM, or bill of materials, is one of the key advantages to...

Taking a Closer Look at Data Reliability Testing

  When it comes to flash memory, reliability is key. This is especially true for...

Power Fail
What Is Intelligent Power Management?

  Power management is a critical issue for industrial applications and embedded storage for many...

Industrial CompactFlash
Spotlight on CF Industrial Cards

  CompactFlash, or CF, cards are one of the most popular and well known choices...

Infotainment in Car
What Is an Embedded Module?

  Within computer units, there are smaller systems that are designed to perform a single...