Delkin Blog

Answering Questions about Wear-Leveling Algorithms in SSD Controllers

Delkin Devices Non-volatile

 

Because NAND Flash blocks in SSDs have a limited number of erase cycles, it’s important for the longevity of the storage to maximize the use of these cycles. Wear-leveling algorithms do just that. With wear leveling, the endurance in NAND memory is increased to make SSDs as reliable as possible. How does it work? Here are the answers to questions engineers and other operators frequently have.

 

 

What exactly is wear leveling?

Within NAND storage, electrons can get trapped in the insulating oxide layer in the floating gate, and the oxide can break down because of hot carrier injections. These actions prevent NAND Flash from having an infinite number of program and erase cycles. Instead, most SLC NAND Flash storage devices work for 70,000 cycles. However, as the storage approaches this maximum usage, the cells become more unreliable. Wear leveling addresses this issue. Through wear-leveling algorithms, data from program and erase operations are evenly distributed on available blocks in the Flash drive. This activity happens automatically in the background, so that the host system is not affected.

 

How does it work?

Different SSD controller designers use different algorithms to achieve wear leveling, including both dynamic and static wear-leveling operations. In some cases, host data written for a Logical Block Address, or LBA, is physically stored where the lowest amount of endurance cycles are used. Because host data written to an LBA is not stored in the physical NAND location, in this scenario, a controller must track the translation.

 

Another approach involves static data that doesn’t move, such as applications data. This data can be moved by controllers to other NAND locations, opening up available storage space in NAND memory.

 

Are wear-leveling algorithms sufficient for improving NAND memory endurance?

Wear-leveling algorithms are essential for increasing endurance in SSDs, but it isn’t the only solution in use. There are multiple strategies working together to improve NAND stability in SSDs, including garbage collection algorithms and TRIM commands.

 

Delkin’s product team is available to answer questions about rugged storage solutions and device endurance for industrial applications. Explore our products’ technical specifications on our site, or contact us for additional information and samples.

 

Contact

  • This field is for validation purposes and should be left unchanged.

Related Posts

FAQs About the Industrial CFast Card

  Industrial CFast cards offer high-capacity storage solutions for applications that are migrating to a...

Industrial SATA for Controls/Automation

  In recent years, an increased use of controls/automation has revolutionized efficiency in factory settings....

Customer Success Story: Application Lifecycle Challenges

  In 2009, mSATA was introduced to the market to address the demand for consumer...

Answering Common Questions About M.2

  Flash memory form factors that are widely compatible and appropriate for a variety of...

Temperature and SLC NAND Flash Memory: What You Need to Know

  NAND flash memory is the preferred form of storage for everything from consumer smartphones...

Concept of Communication Network Applications in City
Industrial CF Cards for the Communications/Networking Industry

  Which kind of embedded storage is best for industrial applications?  It is an understandable...

Delkin PRD SD MICROSD
The ABC’s of microSD and SD Cards

  It used to be so simple.  Just select a Class 10 card and you...

Delkin Devices M.2 2280, PCIe, 128 GB SSD featured for the new UltraZed-EV

Delkin Devices SSD, Internal, M.2 2280 is featured for NVMe SSD capability to the...

Delkin S330 SATA SSD
SATA (Serial ATA) Technical Guide

  SATA Serial ATA was introduced in 2003. It evolved from PATA, and shortly after its...

Interfaces Form Factors
Industrial Flash Storage for Embedded Computing Applications

  Embedded computing applications are critical for both consumer and industrial devices. With such a...